
Copyrightⓒ2013 Altibase.corp All rights reserved

REPLICATION PART 3

 SYSTEM DESIGN

Replication types

♦ Lazy – Fast replication that does not affect the master transaction

♦ Eager – Similar to 2PC(2 Phase commit)

Formation types

♦ Active-Active

• Activates ‘Sender’ from every nodes

♦ Active-Standby

• System that uses fail-over: Activates all the ‘Senders’ such as Active-Active

• System for backup only: Sender is activated only from Active server

ALTIBASE REPLICATION ARCHITECTURE

Two different methods depending on the synchronization point

♦ Lazy(Asynchronous) – The Master transaction and the replication
transaction operates separately. The replication is delayed but
performance of processing transaction is fast

♦ Eager(Synchronous) – The Master transaction and the Replication
transaction operates as one. The performance is slow but there is no
replication delay

Main Feature

♦ There is a trade-off between replication delay or gap and performance

Active

Standby

time

Active

Standby

time

t t' t

delay(Gap)
[Fig1. lazy] [Fig2. eager]

LAZY VS. EAGER

 Storage Manager

 Query Processor

 Remote Server Local Server

Lazy

Eager

redo
logfile #n

receiver

INSERT UPDATE DELETE

1

5
sender

4 6

meta data

redo
logfile #1

redo
logfile #n

2

redo
logfile #1

3
Xlog

redo log

XSN

redo log

thread

file

Network

page

process

 Storage Manager

 Query Processor

meta data

XSN

7

module

MOVE

 Master Transaction= 1 + 2

 Replication Transaction= 3 + 4 + 5 + 6 + 7

 Transaction = 1 + 2 + 3 + 4 + 5 + 6 + 7

 The Master Transaction(2) is confirmed when it’s fully applied to Replication

transaction(7)

ALTIBASE REPLICATION ARCHITECTURE

Replication Gap

♦ The replication gap can be checked at a performance view table called

v$repgap shown by number

• Calculated with SN(Sequence Number) the redo log number and Restart SN

• Replication Gap = [Recent Local Server SN] - [Recent Local Server Restart SN]

 Unsent redo-log Sent redo log

Replication Gap

Restart SN

Time

SN

ALTIBASE REPLICATION ARCHITECTURE

Replication Gap

♦ Different formation depending on the number of DML nodes

• Active-Active Modification is available from every nodes but there is a

possibility of conflicts

• Active-Standby Modification is available from a particular node but there are no

conflicts

Main Features

♦ Trade-off between modification conflicts and Load-Balancing

♦ Consideration for application depending on the formation

• Active-Active : Lock might be occurred

• Active-Standby : Maintaining application depending on the nodes role

Active Active Active Standby

Active Active Standby Standby

[Fig 1. Active-Active] [Fig 2. Active-Standby]

ACTIVE-ACTIVE VS. ACTIVE-STANDBY

How to configure replication system

♦ Active-Active, Active-Standby(fail-over)

• Create [Number of entire servers - 1] number of replication objects for each server

• Sender is activated from all of servers

♦ Active-Standby(backup)

• In active server, create replication object as [Number of entire servers - 1]

• For standby server, create one replication object that corresponds to one active

server

• Sender is activated only from active server

Active Active

Active Active

Active Standby

Standby Standby

[Fig 1. Active-Active, Active-Standby(fail-over)] [Fig 2. Active-Standby(backup)]

REPLICATION SYSTEM SETTING

Example of Creating Replication Object

[Fig 1. Active-Active] [Fig 2. Active-Standby]

REPLICATION SYSTEM SETTING

Active Active

Active Standby

Standby

Standby

Active

Active

Replication Conflict

 Conflicts of different (I/U/D) operations between replication servers

 Data inconsistency will be worse

Cause

 Both Lazy type and Active-Active formation are applied together

 Conflict could occur when it is fail-over even though it’s Active-Standby

Solution

 Choose Eager type when data consistency is important than performance

 The best way is to design a system that avoids the such conflicts

 Design to let each different nodes handle different records

 Conflict Resolution

 It cannot be fully solved with the provided conflict solutions only

Replication Conflict

Consideration depends on the formation types and replication types

Procedure of Adopting Replication

♦ Choosing formation types and Replication types that satisfies system

• Generally Lazy replication type is chosen for fast performance

• Most ideal architecture of system is a combination of Active-Active & Lazy with no

Replication conflicts

♦ Establishing plan for possible errors depending on the types of formation and

Replication

• When there is a Network problem*, the recovery plan has to be established

even though the replication type is eager

Categories
Active-Active Active-Standby

lazy eager lazy eager

Replication

Performance
Fast Slow Fast Slow

Replication Delay* Yes No Yes No

Load Balancing
Every DML is available

(INSERT,UPATE,DELETE)
Unavailable (Only SELECT)

Application Program Lock competes Lock do not competes

Replication Conflicts* Yes No

Data Inconsistency Possible Never Possible Never

REPLICATION SYSTEM MATRIX

 Assigning server that does DML only

♦ Design server1 for DML only and server2 for SELECT only

 Feature

♦ Load-balancing is only allowed in SELECT

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

Active 1 SELECT Active 2 replication

 Divide a number of PKs same as number of nodes

♦ Design server1 for odd number only and server2 for even number only

Main feature

♦ Load-balancing of all the DML operations is possible but caution is advised

when setting up the application program

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

SELECT

Active 1 INSERT

UPDATE

DELETE

SELECT

replication
P
K

TABLE

ODD

EVEN

Active 2

P
K

TABLE

ODD

EVEN

 Dividing table according to its tasks

♦ Server 1 is responsible for table A’s DML only and server 2 is responsible

for table B’s DML only

Main feature

♦ Extra consideration is needed when processing complex tasks even

though the load-balancing of DML operation is possible

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

SELECT

INSERT

UPDATE

DELETE

SELECT

replication

Active 2

P
K

TABLE B
P
K

TABLE A

Active 1

P
K

TABLE B
P
K

TABLE A

 Example of system design that assigns the server for DML only

using L4

♦ Connecting to server by identifying application program with IP from L4

REPLICATION SYSTEM DESIGN EXAMPLE

APP

APP

APP

APP

APP

APP

APP

APP

APP

APP

Active Standby

Business A

Active Standby

Business B

Active Standby

Business C

Active Standby

Business D

Active Standby

Business F

Active Standby

Business E

L4

Copyrightⓒ2013 Altibase.corp All rights reserved

 Q & A

Copyrightⓒ2013 Altibase.corp All rights reserved

Thank you!

Altibase Education Center

Tel : 02-2082-1451

Fax : 02-2082-1459

E-mail : education@altibase.com

Homepage : http://edu.altibase.com

mailto:education@altibase.com

