
Copyrightⓒ2013 Altibase.corp All rights reserved

REPLICATION PART 3

 SYSTEM DESIGN

Replication types

♦ Lazy – Fast replication that does not affect the master transaction

♦ Eager – Similar to 2PC(2 Phase commit)

Formation types

♦ Active-Active

• Activates ‘Sender’ from every nodes

♦ Active-Standby

• System that uses fail-over: Activates all the ‘Senders’ such as Active-Active

• System for backup only: Sender is activated only from Active server

ALTIBASE REPLICATION ARCHITECTURE

Two different methods depending on the synchronization point

♦ Lazy(Asynchronous) – The Master transaction and the replication
transaction operates separately. The replication is delayed but
performance of processing transaction is fast

♦ Eager(Synchronous) – The Master transaction and the Replication
transaction operates as one. The performance is slow but there is no
replication delay

Main Feature

♦ There is a trade-off between replication delay or gap and performance

Active

Standby

time

Active

Standby

time

t t' t

delay(Gap)
[Fig1. lazy] [Fig2. eager]

LAZY VS. EAGER

 Storage Manager

 Query Processor

 Remote Server Local Server

Lazy

Eager

redo
logfile #n

receiver

INSERT UPDATE DELETE

1

5
sender

4 6

meta data

redo
logfile #1

redo
logfile #n

2

redo
logfile #1

3
Xlog

redo log

XSN

redo log

thread

file

Network

page

process

 Storage Manager

 Query Processor

meta data

XSN

7

module

MOVE

 Master Transaction= 1 + 2

 Replication Transaction= 3 + 4 + 5 + 6 + 7

 Transaction = 1 + 2 + 3 + 4 + 5 + 6 + 7

 The Master Transaction(2) is confirmed when it’s fully applied to Replication

transaction(7)

ALTIBASE REPLICATION ARCHITECTURE

Replication Gap

♦ The replication gap can be checked at a performance view table called

v$repgap shown by number

• Calculated with SN(Sequence Number) the redo log number and Restart SN

• Replication Gap = [Recent Local Server SN] - [Recent Local Server Restart SN]

 Unsent redo-log Sent redo log

Replication Gap

Restart SN

Time

SN

ALTIBASE REPLICATION ARCHITECTURE

Replication Gap

♦ Different formation depending on the number of DML nodes

• Active-Active Modification is available from every nodes but there is a

possibility of conflicts

• Active-Standby Modification is available from a particular node but there are no

conflicts

Main Features

♦ Trade-off between modification conflicts and Load-Balancing

♦ Consideration for application depending on the formation

• Active-Active : Lock might be occurred

• Active-Standby : Maintaining application depending on the nodes role

Active Active Active Standby

Active Active Standby Standby

[Fig 1. Active-Active] [Fig 2. Active-Standby]

ACTIVE-ACTIVE VS. ACTIVE-STANDBY

How to configure replication system

♦ Active-Active, Active-Standby(fail-over)

• Create [Number of entire servers - 1] number of replication objects for each server

• Sender is activated from all of servers

♦ Active-Standby(backup)

• In active server, create replication object as [Number of entire servers - 1]

• For standby server, create one replication object that corresponds to one active

server

• Sender is activated only from active server

Active Active

Active Active

Active Standby

Standby Standby

[Fig 1. Active-Active, Active-Standby(fail-over)] [Fig 2. Active-Standby(backup)]

REPLICATION SYSTEM SETTING

Example of Creating Replication Object

[Fig 1. Active-Active] [Fig 2. Active-Standby]

REPLICATION SYSTEM SETTING

Active Active

Active Standby

Standby

Standby

Active

Active

Replication Conflict

 Conflicts of different (I/U/D) operations between replication servers

 Data inconsistency will be worse

Cause

 Both Lazy type and Active-Active formation are applied together

 Conflict could occur when it is fail-over even though it’s Active-Standby

Solution

 Choose Eager type when data consistency is important than performance

 The best way is to design a system that avoids the such conflicts

 Design to let each different nodes handle different records

 Conflict Resolution

 It cannot be fully solved with the provided conflict solutions only

Replication Conflict

Consideration depends on the formation types and replication types

Procedure of Adopting Replication

♦ Choosing formation types and Replication types that satisfies system

• Generally Lazy replication type is chosen for fast performance

• Most ideal architecture of system is a combination of Active-Active & Lazy with no

Replication conflicts

♦ Establishing plan for possible errors depending on the types of formation and

Replication

• When there is a Network problem*, the recovery plan has to be established

even though the replication type is eager

Categories
Active-Active Active-Standby

lazy eager lazy eager

Replication

Performance
Fast Slow Fast Slow

Replication Delay* Yes No Yes No

Load Balancing
Every DML is available

(INSERT,UPATE,DELETE)
Unavailable (Only SELECT)

Application Program Lock competes Lock do not competes

Replication Conflicts* Yes No

Data Inconsistency Possible Never Possible Never

REPLICATION SYSTEM MATRIX

 Assigning server that does DML only

♦ Design server1 for DML only and server2 for SELECT only

 Feature

♦ Load-balancing is only allowed in SELECT

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

Active 1 SELECT Active 2 replication

 Divide a number of PKs same as number of nodes

♦ Design server1 for odd number only and server2 for even number only

Main feature

♦ Load-balancing of all the DML operations is possible but caution is advised

when setting up the application program

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

SELECT

Active 1 INSERT

UPDATE

DELETE

SELECT

replication
P
K

TABLE

ODD

EVEN

Active 2

P
K

TABLE

ODD

EVEN

 Dividing table according to its tasks

♦ Server 1 is responsible for table A’s DML only and server 2 is responsible

for table B’s DML only

Main feature

♦ Extra consideration is needed when processing complex tasks even

though the load-balancing of DML operation is possible

REPLICATION SYSTEM DESIGN

INSERT

UPDATE

DELETE

SELECT

INSERT

UPDATE

DELETE

SELECT

replication

Active 2

P
K

TABLE B
P
K

TABLE A

Active 1

P
K

TABLE B
P
K

TABLE A

 Example of system design that assigns the server for DML only

using L4

♦ Connecting to server by identifying application program with IP from L4

REPLICATION SYSTEM DESIGN EXAMPLE

APP

APP

APP

APP

APP

APP

APP

APP

APP

APP

Active Standby

Business A

Active Standby

Business B

Active Standby

Business C

Active Standby

Business D

Active Standby

Business F

Active Standby

Business E

L4

Copyrightⓒ2013 Altibase.corp All rights reserved

 Q & A

Copyrightⓒ2013 Altibase.corp All rights reserved

Thank you!

Altibase Education Center

Tel : 02-2082-1451

Fax : 02-2082-1459

E-mail : education@altibase.com

Homepage : http://edu.altibase.com

mailto:education@altibase.com

