REPLICATION PART 3

SYSTEM DESIGN

Copyright©2013 Altibase.corp All rights reserved A L I I BAS E

R ——m——————————————
ALTIBASE REPLICATION ARCHITECTURE

Replication types
Lazy — Fast replication that does not affect the master transaction
Eager — Similar to 2PC(2 Phase commit)

Formation types

Active-Active
Activates ‘Sender’ from every nodes

Active-Standby
System that uses fail-over: Activates all the ‘Senders’ such as Active-Active
System for backup only: Sender is activated only from Active server

LTIBASE

R ——m——————————————
LAZY VS. EAGER

Two different methods depending on the synchronization point

Lazy(Asynchronous) — The Master transaction and the replication
transaction operates separately. The replication is delayed but
performance of processing transaction is fast

Eager(Synchronous) — The Master transaction and the Replication
transaction operates as one. The performance is slow but there is no

replication delay

t' t t

Active

Standby >

[Fig2. eager |

Active

time time

Standby

v
\ 4

—!

[Figl. lazy] delay(Gap)

Main Feature
There is a trade-off between replication delay or gap and performance

LTIBASE

ALTIBASE REPLICATION ARCHITECTURE

INSERT‘ UPDATE‘ DELETE‘ MOVE |

process

redo log ! redo log file
@ Xlog @ . @ —
receiver —page—]
redo redo
logfile #n logfile #n Network
: = 4 xsN = = 4 5N = .
. meta | m data |
redo redo
logfile #1 logfile #1
Local Server Remote Server
Lazy * Master Transaction=1 + 2
e Replication Transaction=3+4+5+6+7
Eager * Transaction=1+2+3+4+5+6+7

= The Master Transaction(2) is confirmed when it’s fully applied to Replication

transaction(7)

LTIBASE

R ——m——————————————
ALTIBASE REPLICATION ARCHITECTURE

Replication Gap
The replication gap can be checked at a performance view table called
v3repgap shown by number
Calculated with SN(Sequence Number) the redo log number and Restart SN
Replication Gap = [Recent Local Server SN] - [Recent Local Server Restart SN]

Restart SN SN
A A
. Replication Gap N
Sent redo log Unsent redo-log >
Time

LTIBASE

ACTIVE-ACTIVE VS. ACTIVE-STANDBY

Replication Gap

Different formation depending on the number of DML nodes

Active-Active Modification is available from every nodes but there is a
possibility of conflicts

Active-Standby Modification is available from a particular node but there are no

conflicts
Active Active Active
Active Active ‘_
[Fig 1. Active-Active] [Fig 2. Active-Standby]

Main Features

Trade-off between modification conflicts and Load-Balancing

Consideration for application depending on the formation
Active-Active : Lock might be occurred

Active-Standby : Maintaining application depending on the nodes role

LTIBASE

R ——m——————————————
REPLICATION SYSTEM SETTING

How to configure replication system

Active-Active, Active-Standby(fail-over)
Create [Number of entire servers - 1] number of replication objects for each server
Sender is activated from all of servers

Active-Standby(backup)
In active server, create replication object as [Number of entire servers - 1]
For standby server, create one replication object that corresponds to one active
server
Sender is activated only from active server

Active Active Active -

Active Active

[Fig 1. Active-Active, Active-Standby(fail-over)] [Fig 2. Active-Standby(backup)]

LTIBASE

REPLICATION SYSTEM SETTING

> Example of Creating Replication Object
< >8 [] >

Active Active Active Standby

@< >8

Active Active Standby

[Fig 1. Active-Active] [Fig 2. Active-Standby]

LTIBASE

...
Replication Conflict

Replication Conflict
Conflicts of different (I/U/D) operations between replication servers
Data inconsistency will be worse

Cause
Both Lazy type and Active-Active formation are applied together
Conflict could occur when it is fail-over even though it's Active-Standby
Solution
Choose Eager type when data consistency is important than performance

The best way is to design a system that avoids the such conflicts
Design to let each different nodes handle different records

Conflict Resolution
It cannot be fully solved with the provided conflict solutions only

LTIBASE

R ——m——————————————
REPLICATION SYSTEM MATRIX

Consideration depends on the formation types and replication types

, Active-Active Active-Standby
Categories
lazy eager lazy eager
REPHICETEN, Fast Slow Fast Slow
Performance
Replication Delay* Yes No Yes No

Every DML is available

(INSERT UPATE.DELETE) Unavailable (Only SELECT)

Load Balancing

Application Program | Lock competes Lock do not competes
Replication Conflicts* | Yes No
Data Inconsistency Possible Never Possible Never

Procedure of Adopting Replication

Choosing formation types and Replication types that satisfies system
Generally Lazy replication type is chosen for fast performance
Most ideal architecture of system is a combination of Active-Active & Lazy with no
Replication conflicts
Establishing plan for possible errors depending on the types of formation and
Replication
When there is a Network problem*, the recovery plan has to be established
even though the replication type is eager

LTIBASE

R ——m——————————————
REPLICATION SYSTEM DESIGN

Assigning server that does DML only
Design serverl for DML only and server2 for SELECT only

4 \ 4 \
INSERT A N
UPDATE Active 1 < replication > Active 2 SELECT
DELETE N v
. J \ J
Feature

Load-balancing is only allowed in SELECT

LTIBASE

REPLICATION SYSTEM DESIGN

Divide a number of PKs same as number of nodes
Design serverl for odd number only and server2 for even number only

4 N\ 4 N\
INSERT i i A INSERT
UPDATE TABLE < — > ABLE UPDATE
rep ICation
DELETE P~ ODD N L/ p ODD DELETE
K EVEN K EVEN
SELECT SELECT
\ J _ J

Main feature

Load-balancing of all the DML operations is possible but caution is advised
when setting up the application program

LTIBASE

R ——m——————————————
REPLICATION SYSTEM DESIGN

Dividing table according to its tasks

Server 1 is responsible for table A's DML only and server 2 is responsible
for table B’s DML only

r ~ r N
INSERT Active 1 Active 2 INSERT
UPDATE TABLE A A l\ TABLE A UPDATE
TABLE B < replication > TABLE B
DELETE \l V DELETE
SELECT SELECT
\ y, \ y,

Main feature

Extra consideration is needed when processing complex tasks even
though the load-balancing of DML operation is possible

LTIBASE

REPLICATION SYSTEM DESIGN EXAMPLE

Example of system design that assigns the server for DML only

using L4

Connecting to server by identifying application program with IP from L4

L4

Business A
& Active
Business B
w Active
Business C
Active
Business D
Active
Business E
A Active
Business F
q
Active

LTIBASE

Copyright©2013 Altibase.corp All rights reserved A L I I BAS E

Thank youl!

Altibase Education Center

Tel : 02-2082-1451

Fax : 02-2082-1459

E-mail : education@altibase.com
Homepage : http://edu.altibase.com

Copyright©2013 Altibase.corp All rights reserved

ZlLTiBASE

mailto:education@altibase.com

