
Copyrightⓒ2013 Altibase.corp All rights reserved

REPLICATION PART 4

 Conflict Resolution

 Replication Conflicts Types

♦ INSERT Conflicts – INSERT same PK

♦ UPDATE Conflicts(1) – UPDATE same PK*

♦ UPDATE Conflicts(2) – UPDATE PK that does not exist

♦ DELETE Conflicts – DELETE PK that does not exist

REPLICATION CONFLICT

 Conflict Scenario of INSERT, UPDATE and DELETE

REPLICATION CONFLICT SCENARIO

time node A node B

T1 Insert(PK1) & commit Insert(PK1) & commit

T2 send log(T1) send log(T1)

T3 receive log(node A’s T2) *INSERT CONFLICT

T4 delete(PK1) & commit

T5 send log(T4)

T6 receive log(node A’s T5) *SUCCESS

T7 receive log(node B’s T2) *SUCCESS

T8 select(PK 1) - 1 rows select(PK 1) - no rows

T9 update(PK1) & commit

T10 send log(T9)

T11 receive log(node A’s T10) *UPDATE CONFLICT(2)

T12 delete(PK1) & commit

T13 send log(T12)

T14 receive log(node A’s T13) *DELETE CONFLICT

 UPDATE Conflict Scenario(1)

♦ When there is no detection of UPDATE conflict

♦ The detection is advised to find out whether the DML operation of same PK

in different nodes has succeeded or not

REPLICATION CONFLICT SCENARIO

time node A node B

T1 update(PK1, ‘A’) & commit

T2 send log(T1)

T3 update(PK1, ‘B’) & commit

T4 send log(T3)

T5 receive log(node B’s T4) *SUCCESS

T6 receive log(node A’s T2) *SUCCESS

T7 select(PK1) - ‘B’ *UPDATE CONFLICT(1) select(PK1) - ‘A’ *UPDATE CONFLICT(1)

 Solution that ALTIBASE HDB provides for replication conflict

♦ DBMS Level

• User-oriented scheme

• Timestamps-based scheme

• Master-Slave scheme

♦ Utility Level

• Audit

Different processing in different replication conflict type

ALTIBASE CONFLICT RESOLUTION

Conflict Type Operation Situation Processing

INSERT INSERT INSERT same PK
Follow a conflict policy

configured in receiver*

UPDATE UPDATE
UPDATE same PK

UPDATE PK that does not exist
Produce replication conflict report

only
DELETE DELETE DELETE PK that does not exist

 User-oriented scheme

♦ Replication conflict solution policy that is configured by default

♦ Ignores related operations and records when replication conflict occurs

• It is only recorded in replication trace log file to let user to check and handle

– $ALTIBASE_HOME/trc/altibase_rp.log

Detection and processing for different replication conflict type

USER-ORIENTED SCHEME

Conflict Type Situation Processing

INSERT INSERT same PK

Ignores all the related operations and

produce the detection report only UPDATE
UPDATE same PK

UPDATE PK that does not exist

DELTE DELETE PK that doest not exist

 Value-based Method

♦ Detects DML conflict(UPDATE same PK)

♦ Determined as a conflict when the current value is different to the

previous value

• XLog for UPDATE comprises “Before” and “After” value

 Handles by value-based method that detects DML conflict

♦ Processing DML conflict can be configured by property

• When REPLICATION_UPDATE_REPLACE = 1

USER-ORIENTED SCHEME

14 A B 14 A 14 X B conflict

[Fig1. When it is normal] [Fig2. When it is conflict]

CURRENT AFTER BEFORE

TABLE Xlog

AFTER BEFORE

Xlog

PK PK PK

Situation Processing

DML

Conflict
UPDATE same PK

When REPLICATION_UPDATE_REPLACE =0 , it writes to replication conflict

report

When REPLICATION_UPDATE_REPLACE =1, it ignores all the conflicts and

applies contents

14 A

CURRENT

TABLE

PK

 Caution

♦ For LOB column, it does not detect the conflict of modifying same PK

 LOB data type feature

• LOB cannot be detected as previous value for LOB data type does not exist in redo

log

USER-ORIENTED SCHEME

Master-Slave Scheme

♦ Replication conflict solution policy that assigns both Master and Slave
when creating replication object

♦ Always set Master as standard

Processing Methods

Caution

♦ Replication is possible when there is a Slave object that corresponds to
single Master replication object

 Master-Master (X), Slave-Slave (X), Master or Slave-NONE (X)

MASTER-SLAVE SCHEME

Situation
Processing

Master Slave

INSERT

Conflict
INSERT same PK

Replication Conflict

Report

INSERT is applied after DELETE is executed

on the current record

UPDATE

Conflict
UPDATE same PK

Replication Conflict

Report
Applies UPDATE

 Timestamps-based scheme

♦ Replication conflict solution policy that can be configured as property

• Set REPLICATION_TIMESTAMP_RESOLUTION =1(Default 0)

♦ Identifies rank by using TIMESTAMP

• Conflict can be resolved as the number is ordered by most recent time

 Processing methods

TIMESTAMPS-BASED SCHEME

CURRENT

TABLE

TS PK
CURRENT

TABLE

TS

14 X B T5 14 A T3
14 A B T7 14 A T9

conflict

[Fig1. When it is normal] [Fig2. When it is conflict]

AFTER BEFORE

Xlog

TS PK PK
AFTER BEFORE

Xlog

TS PK

Situation Processing

INSERT

Conflict
INSERT same PK

DELETE is executed on current records and INSERT is executed when

TIMSTAMP is greater than or equal otherwise, it writes to replication

conflict report

UPDATE

Conflict
UPDATE same PK

UPDATE is applied when TIMESTAMP is greater than or equal

otherwise it writes to replication conflict report

 Caution

♦ Time setting for each replication server has to be the same

♦ TIMESTAMP column is compulsory

• Table that has no TIMESTAMP column is not applied even though the

configured property is set to ‘1’

• TIMESTAMP column has to be added by user manually

Note

♦ Additional 8 bytes of data space will be occupied

♦ Communication cost of replication will be increased as the TIMESTAMP

column is sent additionally

TIMESTAMPS-BASED SCHEME

 The flow of Processing when there is a confusion in solving

conflicts

1. Timestamps-based scheme is firstly applied when the relevant property

has to be set to “1” and when TIMESTAMP column exists

2. Master-Slave scheme applied

3. User-oriented scheme applied

CONFLICT RESOLUTION FLOW

Is Timestamps-based

Configured?

YES

NO

Master-Slave

scheme

Is the replication object configured

as Master-slave

Does TIMESTAMP

Column exist?

Timestamps-based

scheme

YES

NO

YES

NO

User-Oriented

scheme

Replication

AUDIT

 Utility that compares and synchronizes two databases on a table-by-table

basis

 Resolving data inconsistencies caused by replication conflicts

 Treats the (MASTER) DB as the reference DB and synchronizes the

(SLAVE) DB with it

 It may not operate properly in the event that a target is DB is on

modification process

AUDIT

 Audit Config

Audit Report

Audit

DB 1 DB 2

Three types of Audit

 Three different cases where data inconsistencies are occurred between

Master DB and Slave DB

AUDIT

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

MOSX

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

KEY VALUE

1 APPLE

2 ORANGE

KEY VALUE

1 APPLE

2 ORANGE

3 GRAPE

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

MOSO

MXSO

Master Slave

Data Synchronization Policy

 The following synchronization policies are used for three different data

inconsistencies occurred between Master DB and Slave DB after a audit

 SI (Slave Database Insert)

 This policy resolves MOSX inconsistencies by inserting records from the

Master DB into the Slave DB

AUDIT

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

MOSX

KEY VALUE

1 APPLE

2 ORANGE

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

SI : Insert into

Slave

Master Slave

 SU (Slave Database Update)

 This policy resolves MOSO inconsistencies by updating the Slave DB with

the contents of the Master DB

AUDIT

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

MOSO

KEY VALUE

1 APPLE

2 ORANGE

3 GRAPE

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

SU : Update

Slave

Master Slave

MI (Master Database Insert)

 This policy resolves MXSO inconsistencies by inserting records from the

Slave DB into the Master DB

AUDIT

KEY VALUE

1 APPLE

2 ORANGE MXSO

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

MI : Insert into

Master

Master Slave

 SD (Slave Database Delete)

 This policy resolves MXSO inconsistencies by deleting records from the

Slave DB

AUDIT

KEY VALUE

1 APPLE

2 ORANGE MXSO

KEY VALUE

1 APPLE

2 ORANGE

3 PEAR

KEY VALUE

1 APPLE

2 ORANGE

KEY VALUE

1 APPLE

2 ORANGE

SD : Delete

from Slave

Master Slave

 AUDIT

 To execute the Audit, it requires the configuration file that contains audit

polices which will be used for two different databases

 Audit configuration file: Contains Audit option such as connection, Audit

function, consistency policies and it is recommended to use sample.cfg by

copying the existing audit.cfg file($ALTIBASE_HOME/audit/sample.cfg)

 Comparison(DIFF) Function : Identifies inconsistent records between

Master DB and Slave DB and creates the result file

 Synchronization(SYNC) Function : Resolves the inconsistencies

between two databases and creates the result file

AUDIT

 Comparison(DIFF) Function

 Identifies inconsistent data between Master DB and Slave DB during the

course of replication and creates the result file

AUDIT

Audit environment file configuration for Comparison

Configuration for Master DB Connection

DB_MASTER=“altibase://sys:manager@DSN=host1;PORT_NO=10111;NLS_USE=MS949”

Configuration for Slave DB Connection

DB_SLAVE=“altibase://sys:manager@DSN=host2;PORT_NO=20111;NLS_USE=MS949”

Audit Operation types (DIFF is configured as it’s comparison)

OPERATION = DIFF

Assign number of threads(Unlimited)

MAX_THREAD = -1

AUDIT

#Configuration of audit policy for inconsistency (Not supported in DIFF)

DELETE_IN_SLAVE = ON

INSERT_TO_SLAVE = ON

INSERT_TO_MASTER = OFF

UPDATE_TO_SLAVE = ON

AUTODETECT_UNIQ_INX = ON

Where execution result file will be created

LOG_DIR = “./”

LOG_FILE = “sample.log”

Configuration of Audit table target

Comparing master table [EMP] with slave table EMPLOYEE

[EMP]

TABLE = EMPLOYEE

SCHEMA = SYS

Comparing master table [DEPT] with slave table DEPARTMENT

[DEPT]

TABLE = DEPARTMENT

SCHEMA = SYS

#Audit environment file configuration finished

 Executing Audit command

 When Audit command is executed successfully, the file named

‘MasterTable-username.SlaveTable.log’ is created about each tables along

with execution log file (sample.log)

AUDIT

$ audit –f sample.cfg

Inside ‘sample.log’ (the execution log file)

INFO[MNG] Tread # 0 init is OK!

INFO[MNG] Tread # 0 start is OK!

[TAB_1->TAB_2]

Fetch Rec In Master: 3

Fetch Rec In Slave : 2

MOSX = DF, Count : 1

MXSO = DF, Count : 0

MOSO = DF, Count : 1

SCAN TPS: 20547.95

Time: 0.00 sec

It displays the contents of

executed environmental file

and the summary of

Comparison(DIFF)operation

about tables in each group

 Inside ‘MasterTable-Username.SlaveTable.log’

 MOSX

 MOSO

 MXSO

AUDIT

$ cat emp-sys.employee.log

MOSX[19,15]->ENO(19):PK->{19}

MOSX[20,15]->ENO(20):PK->{20}

$ cat emp-sys.employee.log

MOSO[10,10]->ENAME('JJLEE ','YHBAE '):PK->{10}

MOSO[11,11]->ENAME(‘MJYOO ','MSKIM '):PK->{11}

$ cat emp-sys.employee.log

MXSO[8,8]->ENO(8):PK->{8}

MXSO[8,9]->ENO(9):PK->{9}

 Synchronization (SYNC) Function

 Resolves the inconsistency by identifying the inconsistent data between

Master DB and Slave DB according to the Audit environment file match

policy

AUDIT

Audit environment file configuration for Synchronization

Configuration for Master DB Connection

DB_MASTER=“altibase://sys:manager@DSN=host1;PORT_NO=10111;NLS_USE=MS949”

Configuration for Slave DB Connection

DB_SLAVE=“altibase://sys:manager@DSN=host2;PORT_NO=20111;NLS_USE=MS949”

Audit Operation Types(SYNC is configured as it’s synchronization)

OPERATION = SYNC

Assign the number of threads(Unlimited)

MAX_THREAD = -1

AUDIT

Configuration of inconsistency audit policy

DELETE_IN_SLAVE = ON

INSERT_TO_SLAVE = ON

INSERT_TO_MASTER = OFF

UPDATE_TO_SLAVE = ON

AUTODETECT_UNIQ_INX = ON

Assign the location where execution result file will be created

LOG_DIR = “./”

LOG_FILE = “sample.log”

Configuration of target Audit table

Comparing master table [EMP] with slave table EMPLOYEE

[EMP]

TABLE = EMPLOYEE

SCHEMA = SYS

Comparing master table [DEPT] with slave table DEPARTMENT

[DEPT]

TABLE = DEPARTMENT

SCHEMA = SYS

#Audit environment file configuration finished

 Executing Audit command

 The contents of execution result file are as follows. If a failure occurs for

any record, the cause of the error and the record contents are written to

the log

AUDIT

$ audit –f sample.cfg

INFO[MNG] Tread # 0 init is OK!

INFO[MNG] Tread # 0 start is OK!

[TAB_1->TAB_2]

Fetch Rec In Master: 3

Fetch Rec In Slave : 2

MOSX = -, SI

MXSO = -, -

MOSO = -, SU

MXSX = -, -

AUDIT

--

Operation Type MASTER SLAVE

--

INSERT Try 0 1

 Fail 0 0

UPDATE Try X 1

 Fail X 0

DELETE Try X 0

 Fail X 0

--

UPDATE Try 0 2

 Fail 0 0

OOP TPS: 13698.63

SCAN TPS: 20547.95

 Time: 0.00 sec

AUDIT

Synchronization(SYNC) Operation Procedure

1. Stop all the related applications

Data might be inconsistent in the event of modification transaction during

AUDIT SYNC

2. Check replication gap

Check whether everything is reflected to remote server (rep_gap=0)

1. Stop replication

2. Execute AUDIT

3. REPLICATION QUICK START

 Prevent the transaction log is sent to replication

iSQL> SELECT rep_gap FROM v$repgap;

iSQL> ALTER REPLICATION replication_name STOP;

iSQL> ALTER REPLICATION replication_name QUICKSTART;

AUDIT

Cautions

♦ Error recorded in Logfile when there is no PK

• FATAL[TASK] Process failure! [SCANER]: [ERR-910D8 : No Primary Key

Column exist (T1:T1)]

♦ Error when there is a conflict between SD and MI policy

• Invalid Property Value SD and MI Incompatible was defined.

♦ Same value with different data type recognized differently

• char(10) vs. varchar(10)

Copyrightⓒ2013 Altibase.corp All rights reserved

 Q & A

Copyrightⓒ2013 Altibase.corp All rights reserved

Thank you!

Altibase Education Center

Tel : 02-2082-1451

Fax : 02-2082-1459

E-mail : education@altibase.com

Homepage : http://edu.altibase.com

mailto:education@altibase.com

