
Copyrightⓒ2013 Altibase.corp All rights reserved

Replication Part 5

 Optimization & Monitoring

Copyrightⓒ2013 Altibase.corp All rights reserved

Optimization

 Consideration for optimizing ALTIBASE HDB Replication

♦ Compulsory for minimizing the Replication gap and improving TPS

• Optimize Network

• Transaction Tuning

♦ Active-Active

• Partial failure and partial roll back

• Lock system in Replication

• Replication lock timeout

• Replication Dead-Lock

• Replication Sender Tuning

OVERVIEW

 UPDATE for PK is not available

♦ Treated as error when UPDATE is executed on PK as there

could be a replication conflict

APPLICATION RESTRICTION

H/W
♦ Connected with H/W performance as it’s TCP/IP Network based replication

• Replication exclusive line that is over 1 Giga Bit bandwidth separated
from service line

• Exclusive LAN card is recommended as much as the number of
replication objects

• Twice the number replication related network H/W is required to prepare
for network failure(multiple IP)

• Optimize other network facilities

S/W
♦ Optimize the configuration of network parameters depending on OS
platform

Design Replication Object
♦ Separating replication object is recommended if the order of transaction
among replication objects is not important

• Increase of performance can be expected as the replication sender thread is
created as much as the number of objects

• Separation of disk table and memory table is recommended

– Prevents the performance reduction of memory table reduced by the slow performance of
disk table

NETWORK OPTIMIZATION

 Transaction tuning that exceeds network bandwidth

♦ Bulk DML operations are not recommended

 Separation using LIMIT query

 Execute same operation after configuring replication session control option

to “NONE” from both servers

 Use TRUNCATE rather than DELETE when deleting entire table regularly

TRANSACTION TUNING

 Partial Fail

♦ Applying particular record of transaction is failed from remote server

♦ Entire transaction fails as particular record fails to reflect

 Cause

♦ Replication conflicts and exceeding replication lock timeout

PARTIAL FAIL & PARTIAL ROLLBACK

UPDATE rep_tbl
SET c2 = ‘X’

WHERE c1 >= 301

AND c1 <= 400;

execution #001

execution #002 receiver
Xlog

 Remote Server

301

302

NEW

NEW

REP_TBL

execution #099

execution #100

399

400

OLD

NEW

fail

[Situation where one transaction that modifies 100 records fails to reflect one data during replication]

 Different Processing with different replication types for partial
fail

 Partial Rollback

♦ Method that rollbacks the record that have failed during replication in
remote server

♦ Purpose is to prevent the failure of reflection of entire transaction due to
the failure of particular record

♦ Record where partial rollback is executed has the data inconsistency
between local and remote server

PARTIAL FAIL & PARTIAL ROLLBACK

lazy eager

Local - Error is occurred when COMMIT is executed

Remote

Error log is recorded with the record and its

statement

Execute partial rollback for the record and its

operation

Error log is recorded about the record and its

statement

Outcome Particular record is only applied in local server
Transaction is not applied to both local and remote

server

 Lock System in replication

 It has the record unit lock system similar with single server

♦ Lock is acquired in two ways when DML is executed on the same

records

• When DML operation of replication acquired the lock first (1~3)

• When DML operation of master transaction acquired the lock first(4~6)

LOCK SYSTEM IN REPLICATION

TX TX

 Server 2 Server 1

UPDATE (2)

UPDATE (45)

1

2

45

DATA

DATA

DATA

REP_TBL

1

2

45

DATA

DATA

DATA

REP_TBL

UPDATE (2) 3

4

UPDATE (45)

2
1

5

6

WAIT

WAIT

[Flow of acquiring lock between replication servers depending on its lock acquire point]

 Situations for the lock types when long-lasting

♦ When DML operation of replication acquired the lock first

• The master transaction is waiting for the lock to be acquired but it is normal

flow in a DBMS level

♦ When DML operation of master acquired the lock first

• Replication is stopped as the receiver waits to acquire the lock

• Data inconsistency becomes more serious as replication gap increases

 How to handle

♦ Configure the waiting time limit for DML operation of replication

• Choose the policy that gives up the DML operation of particular record

when the waiting time is exceeded

LOCK SYSTEM IN REPLICATION

 Replication lock timeout

♦ Maximum waiting time for a receiver to acquire a lock during

replication

♦ Purpose is to prevent the entire replication operations got affected by

lock

♦ Applied by the property from replication receiver

• REPLICATION_LOCK_TIMEOUT, 5 seconds by default

 Considerations

♦ Configure the appropriate replication lock timeout number depending

on the system

• If the number is too big, the replication might be stopped for a long time

• If the number is too small, the data inconsistency might become more

serious as the frequent lock timeout

♦ DML execution from replication server

• Caution is advised that some records might not be applied due to

replication lock timeout

REPLICATION LOCK TIMEOUT

 Replication Deadlock

♦ Infinite waiting as the DML transaction of master and a DML operation

of Replication are crossed each other

♦ Network deadlock that cannot be detected from DBMS

♦ It can be controlled by configuring the maximum waiting time of DML

transaction from the property

• UTRANS_TIMEOUT

♦ Best way is to implement the system that considers two DML

transactions compete

REPLICATION DEADLOCK

TX TX

 Remote Server Local Server

UPDATE (2)

UPDATE (45)

1

2

45

DATA

DATA

DATA

REP_TBL

1

2

45

DATA

DATA

DATA

REP_TBL

UPDATE (2)

1

5

3

UPDATE (45)

6

2

4
WAIT

WAIT

 Sender’s approaching order of redo log

1. Replication redo log buffer

2. Redo log buffer

3. Redo logfile

 Tuning via property when sender’s

performance decreased

♦ Increment the size of replication redo log buffer

size

REPLICATION_LOG_BUFFER_SIZE

– Maximum 4G and 30M by default

– To not directly approach the redo log buffer

♦ Increment the number of prepared redo logfiles

• REPLICATION_PREFETCH_LOGFILE_COUNT

– Maximum 1024, 0 by default

– Performance is improved as redo log files are read

in advance

– 2nd tuning target

REPLICATION SENDER TUNING

 Local Server

INSERT UPDATE DELETE

sender

redo log

buffer

redo
logfile #1

redo
logfile #n Xlog

service

service

service

replication

redo log

buffer

service thread Pool

service

1 2 3

Copyrightⓒ2013 Altibase.corp All rights reserved

Monitoring

 DBMS Monitoring methods

 How to do Monitoring

♦ Create a shell script that include all the related commands and run on

regular basis

 Use Utility

– ALTIMON

– Replication Manager

♦ Write an application program

OVERVIEW

Methods Description

Internal Monitoring Monitors internal DBMS by inquiring the meta tables and performance views

External Monitoring Monitors external categories that are related to DBMS using OS commands in a OS level

Trace Log Monitoring Monitors various trace log messages created from DBMS

Main internal monitoring categories for replication

♦ Replication Gap

♦ Sender

♦ Receiver

Main external monitoring categories for replication

♦ Network

♦ Redo log file system

♦ ALTIBASE HDB startup status

♦ OS startup status

Main trace log categories for replication

♦ Replication trace log file

REPLICATION MONITORING

 Additional categories for internal monitoring

♦ The following tables are essential as they are somehow effected each

other even though they are not directly related

• Executing BULK DML

– v$transaction, v$statement, v$session

REPLICATION MONITORING

Meta table related to Replication

REPLICATION META TABLE

Meta table Description

SYS_REPLICATIONS_ Replication object information

SYS_REPL_HOSTS_ IP information about target replication of each replication object

SYS_REPL_ITEMS_ Table information about target replication for each replication object

SYS_REPL_OFFLINE_DIR_ Information about offline Replication option(5.3.3 higher)

SYS_REPL_OLD_COLUMNS_ Information about column of target Replication that sender is using

SYS_REPL_OLD_INDEX_COLUMNS_ Information about index column of target Replication that sender is using

SYS_REPL_OLD_INDICES_ Information about index of target Replication that sender is using

SYS_REPL_OLD_ITEMS_ Information about table of target Replication that sender is using

SYS_REPL_RECOVERY_INFOS_ Meta table of log information for Replication recovery

SYS_REPLICATIONS

SYS_REPL_HOSTS_

_

REPLICATION META TABLE

Column Name Description

REPLICATION_NAME Replication name

IS_STARTED Whether replication is started or not

XSN The restart SN that the sender will send Xlog

ITEM_COUNT Number of replication tables

CONFLICT_RESOLUTION Method of conflict resolution

REPL_MODE Default Replication Mode

Column Name Description

HOST_NO Host Identifier

REPLICATION_NAME Replication Name

HOST_IP Remote Server IP

PORT_NO Remote Server Replication Port Number

SYS_REPL_ITEMS_

_

REPLICATION META TABLE

Column Name Description

REPLICATION_NAME Replication name

TABLE_OID Table Object Identifier

LOCAL_USER_NAME Name of table owner from local server

LOCAL_TABLE_NAME Name of local server’s table

REMOTE_USER_NAME Name of table owner from remote server

REMOTE_TABLE_NAME Name of remote server’s table

Replication Performance View

 Available only when sender and receiver are activated

 The replication gap number from v$repgap table is shown only when sender

is activated

REPLICATION PERFORMANCE VIEW

Performance View Description

v$repgap Replication Gap Information

v$repsender Sender Information

v$repsender_transtbl Transaction table information of Sender

v$repreceiver Receiver Information

v$repreceiver_column The information of replication column from Receiver

v$repreceiver_transtbl The information of transaction table from Receiver

v$repsync The information of table that is performing table clone

v$repoffline_status
The information of offline replication state

(5.3.3 higher)

v$repexec The information of replication owner

v$replogbuffer The information of replication log buffer

v$repgap

v$repsender

_

REPLICATION META TABLE

Column Name Description

REP_NAME Replication Object Name

REP_LAST_SN Serial number of last log record

REP_SN Serial number of log record that has currently been sent

REP_GAP The difference between REP_LAST_SN and REP_SN

READ_FILE_NO The log file number of that the DB is currently reading

Column Name Description

REP_NAME Replication Object Name

XSN SN of log record that has currently been sent

COMMIT_XSN SN of current log record

STATUS Current Status

SENDER_IP IP address of sender

PEER_IP IpPaddress of remote

REPL_MODE Replication mode that the user assigned

v$repreceiver

_

REPLICATION META TABLE

Column Name Description

REP_NAME Replication Object Name

MY_IP IP address of local server

PEER_IP IP address of remote server

APPLY_XSN Handling XSN

 Local Server

REPLICATION MONITORING EXAMPLE

iSQL> SELECT rep_name, rep_sn, rep_last_sn, rep_gap, read_file_no FROM v$repgap;

REP_NAME REP_SN REP_LAST_SN REP_GAP READ_FILE_NO

REP1 60602217 61617892 1015675 529

1 row selected.

iSQL> SELECT rep_name, xsn, status, repl_mode FROM v$repsender;

REP_NAME XSN STATUS REPL_MODE

REP1 60602217 1 LAZY

1 row selected.

iSQL> SELECT replication_name, xsn, is_started FROM SYSTEM_.SYS_REPLICATIONS_;

REPLICATION_NAME XSN IS_STARTED

--

REP1 60600750 1

1 row selected.

iSQL> exit

$

$ ls $ALTIBASE_HOME/logs

loganchor0 logfile529 logfile532 logfile535 logfile538 logfile541 logfile544

loganchor1 logfile530 logfile533 logfile536 logfile539 logfile542 logfile545

loganchor2 logfile531 logfile534 logfile537 logfile540 logfile543

 Remote Server

REPLICATION MONITORING EXAMPLE

iSQL> SELECT rep_name, apply_xsn FROM v$repreceiver;

REP_NAME APPLY_XSN

REP1 60600750

Copyrightⓒ2013 Altibase.corp All rights reserved

 Q & A

Copyrightⓒ2013 Altibase.corp All rights reserved

Thank you!

Altibase Education Center

Tel : 02-2082-1451

Fax : 02-2082-1459

E-mail : education@altibase.com

Homepage : http://edu.altibase.com

mailto:education@altibase.com

